Synthesis of Oligo-enynes Using [Fe(alkene)(CO)_n] Scaffolds. Z/E-Selective Wittig- and Horner-type Olefination Reactions of β -Carbonyl Groups in η^4 -Diene and γ -Carbonyl Groups in η^2 -Alkene Complexes of Iron Jutta Böhmer and Rainer Schobert^{*}

Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestraße 42,

J. Chem. Research (S), 1998, 372–373 J. Chem. Research (M), 1998, 1565-1584

D-91054 Erlangen, Germany β-Oxo-dienetricarbonyliron complexes **4** and γ-oxo-alkenecarbene complexes **5** undergo olefinations with a wide range

of phosphonates and phosphoranes with high *E*- or *Z*-selectivity and give the free oligo-en(yn)es or carbamates, respectively, upon oxidative demetalation.

Natural products with methylene-separated alkatrien(yn)e cores are of considerable pharmaceutical interest. As their bioactivity seems to be linked to specific configurations of the double bonds, any synthetic approach relies on stereo-selective olefination steps, like Wittig and Horner reactions. Performing them on complexed ('scaffolded') instead of free (di)enes is an advantage as trien(yn)es having only a part of their π -system protected are amenable to further functionalization of either the coordinated or the unligated π -moiety. Moreover, coordination prevents the whole of the π -system from being shifted.

We now report on the ease and selectivity of such olefination reactions between β -oxo-dienetricarbonyliron complexes **4** as well as γ -oxo-alkenecarbene complexes **5**, both available from (η^3 -allyl)ironcarbene complexes **3**^{11,12} and various phosphonates **6–10** or phosphoranes **11** and **12**. Very little was known in literature about the activating and stereodirective influence of an Fe(CO)₃ fragment in combination with two different residues ($\mathbb{R}^{2,3}$) adjacent to the carbonyl carbon. In general, we found no such stereo-directive but a small overall deactivating effect. The observed stereoselectivities are high in most cases.

Li- or K-salts of phosphonates 7 and 8 readily react with 4 and 5 to give exclusively the *E*-olefins (13c,d, 15b). Olefination with 7 leads directly to unsaturated aldehydes like 13c which can be olefinated once more to yield 13h and so forth.

Phosphorane 11 gives exclusively *E*-olefins with complexes 4a (13f) and 5a (15d) in a slow reaction; phosphorane 12 quickly reacts to the *Z*-products 13g and 15e. Neither ylide reacts with keto-terminated complexes 4 or 5!

6/KH reacts with 4a ($R^1 = H$) to give a Z/E-mixture (5:1) of 13a but with 4b ($R^1 = Me$) exclusively the E-complex 13b results. With both pure diastereomers 5d and 5d' ($R^{2/3} = Ph/Me$), the olefins 15a and 15a', respectively, are formed at the same ratio Z/E = 4:1. In terms of reactivity, there are distinct differences between such diastereomers, though, which is shown by reaction of 11 with a 2:1 diastereomeric mixture of 5c and 5c', to give a 1:1 mixture (55%) of 15d and 15d' beside residual and now diastereomerically pure 5c (28%).

Cyanophosphonate 9 merely gives Z/E-mixtures (1.5:1) with 4 and 5. α -Diazophosphonate 10 reacts with 5 to give metallacycles with a terminal acetylene (not shown here). Oxidative demetalation of 13 furnishes the free trien(yn)es 14 and of 15 the carbamates 16 both with unchanged Z/E- ratios.

Techniques used: ¹H and ¹³C NMR, IR, MS, elemental analysis

References: 28

Tables: 2 (yields, conditions, Z/E ratios)

Figures: 2

Schemes: 8

 Table 1
 Iron complexes 13, 15 by olefination of 4 or 5

	R ¹	R ²	R ³	R ⁵	R ⁶	Conditions	Yield (%)	Z:E
13a	Н	Me	Me	_	TMS-CC-	–78 °C/1 h	69	5:1
13b	Me	Me	Me	-	TMS-CC-	–78 °C∕1 h	70	only E
13c	н	Me	Me	_	СНО	–30 °C/1 h	73	only E
13d	н	Me	Me	_	MeCO	25 °C/5 h	61	only E
13e	н	Me	Me	_	CN	–78 °C/1 h	55	1.4:1
13f	н	Me	Me	_	CO ₂ Me	60 °C/11 d	61	only E
13f	Н	Me	Me	-	CO ₂ Me	SiO ₂ /25 °C/30 h	64	only E
13g	н	Me	Me	_	Et	-78°C/10 min	67	only Z
13ĥ	Н	Me	Me	-	С—ССНО	–30 °C∕1 h	63	only E
15a	н	Me	Ph	Me	TMS-CC-	–78 °C∕1 h	72	4:1
15a′	н	Ph	Me	Me	TMS-CC-	–78 °C∕1 h	61	4:1
15b	Н	Me	Me	Н	СНО	–30 °C∕1 h	56	only E
15c	н	Me	Me	Me	CN	–78 °C∕1 h	68	1.5:1
15d(′)	Н	Me	/ Ph	Н	CO ₂ Me	SiO ₂ /25 °C/30 h	55	only E
15e	н	Me	Me	Н	Et -	-78°C/10 min	54	only Z

Received, 12th February 1998; Accepted, 31st March 1998 Paper E/8/01240G

References cited in this synopsis

J. Böhmer, W. Förtsch, F. Hampel and R. Schobert, *Chem. Ber.*, 1996, **129**, 427.
 J. Böhmer, F. Hampel and R. Schobert, *Synthesis*, 1997, 661.